Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 2.112
1.
Neuromolecular Med ; 26(1): 20, 2024 May 14.
Article En | MEDLINE | ID: mdl-38744725

The salient features of autism spectrum disorder (ASD) encompass persistent difficulties in social communication, as well as the presence of restricted and repetitive facets of behavior, hobbies, or pursuits, which are often accompanied with cognitive limitations. Over the past few decades, a sizable number of studies have been conducted to enhance our understanding of the pathophysiology of ASD. Preclinical rat models have proven to be extremely valuable in simulating and analyzing the roles of a wide range of established environmental and genetic factors. Recent research has also demonstrated the significant involvement of the endocannabinoid system (ECS) in the pathogenesis of several neuropsychiatric diseases, including ASD. In fact, the ECS has the potential to regulate a multitude of metabolic and cellular pathways associated with autism, including the immune system. Moreover, the ECS has emerged as a promising target for intervention with high predictive validity. Particularly noteworthy are resent preclinical studies in rodents, which describe the onset of ASD-like symptoms after various genetic or pharmacological interventions targeting the ECS, providing encouraging evidence for further exploration in this area.


Autism Spectrum Disorder , Disease Models, Animal , Endocannabinoids , Endocannabinoids/physiology , Endocannabinoids/metabolism , Autism Spectrum Disorder/drug therapy , Autism Spectrum Disorder/genetics , Autism Spectrum Disorder/metabolism , Animals , Humans , Rats , Receptors, Cannabinoid/physiology , Mice , Child
2.
Gut Microbes ; 16(1): 2335879, 2024.
Article En | MEDLINE | ID: mdl-38695302

Dietary omega-3 polyunsaturated fatty acids (n-3 PUFAs) and the gut microbiome affect each other. We investigated the impact of supplementation with Buglossoides arvensis oil (BO), rich in stearidonic acid (SDA), on the human gut microbiome. Employing the Mucosal Simulator of the Human Intestinal Microbial Ecosystem (M-SHIME), we simulated the ileal and ascending colon microbiomes of four donors. Our results reveal two distinct microbiota clusters influenced by BO, exhibiting shared and contrasting shifts. Notably, Bacteroides and Clostridia abundance underwent similar changes in both clusters, accompanied by increased propionate production in the colon. However, in the ileum, cluster 2 displayed a higher metabolic activity in terms of BO-induced propionate levels. Accordingly, a triad of bacterial members involved in propionate production through the succinate pathway, namely Bacteroides, Parabacteroides, and Phascolarctobacterium, was identified particularly in this cluster, which also showed a surge of second-generation probiotics, such as Akkermansia, in the colon. Finally, we describe for the first time the capability of gut bacteria to produce N-acyl-ethanolamines, and particularly the SDA-derived N-stearidonoyl-ethanolamine, following BO supplementation, which also stimulated the production of another bioactive endocannabinoid-like molecule, commendamide, in both cases with variations across individuals. Spearman correlations enabled the identification of bacterial genera potentially involved in endocannabinoid-like molecule production, such as, in agreement with previous reports, Bacteroides in the case of commendamide. This study suggests that the potential health benefits on the human microbiome of certain dietary oils may be amenable to stratified nutrition strategies and extend beyond n-3 PUFAs to include microbiota-derived endocannabinoid-like mediators.


Bacteria , Endocannabinoids , Gastrointestinal Microbiome , Humans , Gastrointestinal Microbiome/drug effects , Bacteria/classification , Bacteria/metabolism , Bacteria/isolation & purification , Bacteria/genetics , Endocannabinoids/metabolism , Colon/microbiology , Colon/metabolism , Ileum/microbiology , Ileum/metabolism , Fatty Acids, Omega-3/metabolism , Plant Oils/metabolism , Plant Oils/pharmacology , Dietary Supplements , Adult , Male
3.
Int J Mol Sci ; 25(9)2024 May 03.
Article En | MEDLINE | ID: mdl-38732230

Cannabinoid receptors CB1R and CB2R are G-protein coupled receptors acted upon by endocannabinoids (eCBs), namely 2-arachidonoylglycerol (2-AG) and N-arachidonoyl ethanolamine (AEA), with unique pharmacology and modulate disparate physiological processes. A genetically encoded GPCR activation-based sensor that was developed recently-GRABeCB2.0-has been shown to be capable of monitoring real-time changes in eCB levels in cultured cells and preclinical models. However, its responsiveness to exogenous synthetic cannabinoid agents, particularly antagonists and allosteric modulators, has not been extensively characterized. This current study expands upon the pharmacological characteristics of GRABeCB2.0 to enhance the understanding of fluorescent signal alterations in response to various functionally indiscriminate cannabinoid ligands. The results from this study could enhance the utility of the GRABeCB2.0 sensor for in vitro as well as in vivo studies of cannabinoid action and may aid in the development of novel ligands.


Endocannabinoids , Receptor, Cannabinoid, CB1 , Receptor, Cannabinoid, CB2 , Humans , Receptor, Cannabinoid, CB2/metabolism , Endocannabinoids/metabolism , Receptor, Cannabinoid, CB1/metabolism , HEK293 Cells , Ligands , Glycerides/pharmacology , Biosensing Techniques/methods , Cannabinoid Receptor Modulators/pharmacology , Animals , Arachidonic Acids/pharmacology , Arachidonic Acids/metabolism
4.
Neuropharmacology ; 252: 109940, 2024 Jul 01.
Article En | MEDLINE | ID: mdl-38570068

The endocannabinoid system (ECS) is critically involved in the pathophysiology of Multiple Sclerosis (MS), a neuroinflammatory and neurodegenerative disease of the central nervous system (CNS). Over the past decade, researchers have extensively studied the neuroprotective and anti-inflammatory effects of the ECS. Inhibiting the degradation of the endocannabinoid 2-arachidonoylglycerol (2-AG) has emerged as a promising strategy to mitigate brain damage in MS. In this study, we investigated the effects of a novel reversible MAGL inhibitor (MAGLi 432) on C57/BL6 female mice with experimental autoimmune encephalomyelitis (EAE), a model of MS. We assessed its implications on motor disability, neuroinflammation, and synaptic dysfunction. Systemic in vivo treatment with MAGLi 432 resulted in a less severe EAE disease, accompanied by increased 2-AG levels and decreased levels of arachidonic acid (AA) and prostaglandins (PGs) in the brain. Additionally, MAGLi 432 reduced both astrogliosis and microgliosis, as evidenced by decreased microglia/macrophage density and a less reactive morphology. Flow cytometry analysis further revealed fewer infiltrating CD45+ and CD3+ cells in the brains of MAGLi 432-treated EAE mice. Finally, MAGLi treatment counteracted the striatal synaptic hyperexcitability promoted by EAE neuroinflammation. In conclusion, MAGL inhibition significantly ameliorated EAE clinical disability and striatal inflammatory synaptopathy through potent anti-inflammatory effects. These findings provide new mechanistic insights into the neuroprotective role of the ECS during neuroinflammation and highlight the therapeutic potential of MAGLi-based drugs in mitigating MS-related inflammatory and neurodegenerative brain damage.


Arachidonic Acids , Encephalomyelitis, Autoimmune, Experimental , Endocannabinoids , Glycerides , Mice, Inbred C57BL , Animals , Encephalomyelitis, Autoimmune, Experimental/drug therapy , Encephalomyelitis, Autoimmune, Experimental/pathology , Encephalomyelitis, Autoimmune, Experimental/metabolism , Female , Glycerides/metabolism , Mice , Endocannabinoids/metabolism , Arachidonic Acids/pharmacology , Arachidonic Acids/metabolism , Neuroinflammatory Diseases/drug therapy , Neuroinflammatory Diseases/metabolism , Synapses/drug effects , Synapses/pathology , Synapses/metabolism , Microglia/drug effects , Microglia/metabolism , Monoacylglycerol Lipases/antagonists & inhibitors , Monoacylglycerol Lipases/metabolism
5.
Biomolecules ; 14(4)2024 Apr 19.
Article En | MEDLINE | ID: mdl-38672512

In our previous study, we demonstrated the impact of overexpression of CB1 and CB2 cannabinoid receptors and the inhibitory effect of endocannabinoids (2-arachidonoylglycerol (2-AG) and Anandamide (AEA)) on canine (Canis lupus familiaris) and human (Homo sapiens) non-Hodgkin lymphoma (NHL) cell lines' viability compared to cells treated with a vehicle. The purpose of this study was to demonstrate the anti-cancer effects of the phytocannabinoids, cannabidiol (CBD) and ∆9-tetrahydrocannabinol (THC), and the synthetic cannabinoid WIN 55-212-22 (WIN) in canine and human lymphoma cell lines and to compare their inhibitory effect to that of endocannabinoids. We used malignant canine B-cell lymphoma (BCL) (1771 and CLB-L1) and T-cell lymphoma (TCL) (CL-1) cell lines, and human BCL cell line (RAMOS). Our cell viability assay results demonstrated, compared to the controls, a biphasic effect (concentration range from 0.5 µM to 50 µM) with a significant reduction in cancer viability for both phytocannabinoids and the synthetic cannabinoid. However, the decrease in cell viability in the TCL CL-1 line was limited to CBD. The results of the biochemical analysis using the 1771 BCL cell line revealed a significant increase in markers of oxidative stress, inflammation, and apoptosis, and a decrease in markers of mitochondrial function in cells treated with the exogenous cannabinoids compared to the control. Based on the IC50 values, CBD was the most potent phytocannabinoid in reducing lymphoma cell viability in 1771, Ramos, and CL-1. Previously, we demonstrated the endocannabinoid AEA to be more potent than 2-AG. Our study suggests that future studies should use CBD and AEA for further cannabinoid testing as they might reduce tumor burden in malignant NHL of canines and humans.


Benzoxazines , Cannabidiol , Cell Survival , Dronabinol , Lymphoma, Non-Hodgkin , Morpholines , Naphthalenes , Humans , Dogs , Cannabidiol/pharmacology , Animals , Cell Line, Tumor , Cell Survival/drug effects , Dronabinol/pharmacology , Lymphoma, Non-Hodgkin/drug therapy , Lymphoma, Non-Hodgkin/metabolism , Lymphoma, Non-Hodgkin/pathology , Benzoxazines/pharmacology , Naphthalenes/pharmacology , Apoptosis/drug effects , Antineoplastic Agents/pharmacology , Endocannabinoids/pharmacology , Endocannabinoids/metabolism
6.
Sci Rep ; 14(1): 9459, 2024 04 24.
Article En | MEDLINE | ID: mdl-38658668

Analysis of endocannabinoids (ECs) and N-acylethanolamines (NAEs) in hair is assumed to retrospectively assess long-term EC/NAE concentrations. To inform their use, this study investigated stability of EC/NAE hair concentrations in mothers, fathers, and their children across the perinatal period as well as associations between family members. In a prospective cohort study, EC (AEA, 1-AG/2-AG) and NAE (SEA, PEA, OEA) levels were quantified in hair samples taken four times in mothers (n = 336) and their partners (n = 225) from pregnancy to two years postpartum and in offspring (n = 319) from shortly after birth to two years postpartum. Across the perinatal period, maternal and paternal hair ECs/NAEs showed poor multiple-test consistency (16-36%) and variable relative stability, as well as inconsistent absolute stability for mothers. Regarding children, hair ECs/NAEs evidenced poor multiple-test consistency (4-19%), no absolute stability, and either no or variable relative stability. Hair ECs/NAEs showed small to medium significant associations across the perinatal period within couples and parent-child dyads. Findings suggest hair ECs/NAEs during the perinatal period possess variable stability in adults, albeit more stability in fathers than mothers in this time. This highlights the need to further investigate factors associated with changes in hair ECs/NAEs across time. The first two years of life may be a dynamic phase for the endocannabinoid system in children, potentially characterized by complex within-family correspondence that requires further systematic investigation.


Endocannabinoids , Ethanolamines , Fathers , Hair , Mothers , Humans , Endocannabinoids/metabolism , Endocannabinoids/analysis , Female , Hair/chemistry , Hair/metabolism , Male , Ethanolamines/metabolism , Ethanolamines/analysis , Adult , Pregnancy , Child, Preschool , Infant , Prospective Studies , Infant, Newborn , Child
7.
Biomolecules ; 14(4)2024 Apr 05.
Article En | MEDLINE | ID: mdl-38672462

Microgravity is one of the main stressors that astronauts are exposed to during space missions. This condition has been linked to many disorders, including those that feature dysfunctional immune homeostasis and inflammatory damage. Over the past 30 years, a significant body of work has been gathered connecting weightlessness-either authentic or simulated-to an inefficient reaction to pathogens, dysfunctional production of cytokines and impaired survival of immune cells. These processes are also orchestrated by a plethora of bioactive lipids, produced by virtually all cells involved in immune events, which control the induction, magnitude, outcome, compartmentalization and trafficking of immunocytes during the response to injury. Despite their crucial importance in inflammation and its modulation, however, data concerning the role of bioactive lipids in microgravity-induced immune dysfunctions are surprisingly scarce, both in quantity and in variety, and the vast majority of it focuses on two lipid classes, namely eicosanoids and endocannabinoids. The present review aims to outline the accumulated knowledge addressing the effects elicited by microgravity-both simulated and authentic-on the metabolism and signaling of these two prominent lipid groups in the context of immune and inflammatory homeostasis.


Immune System , Weightlessness , Humans , Immune System/metabolism , Immune System/immunology , Animals , Endocannabinoids/metabolism , Eicosanoids/metabolism , Lipid Metabolism , Inflammation/metabolism , Inflammation/immunology , Signal Transduction , Space Flight , Lipids/immunology
8.
Int J Mol Sci ; 25(8)2024 Apr 10.
Article En | MEDLINE | ID: mdl-38673788

Phytocannabinoids, a diverse group of naturally occurring compounds extracted from the Cannabis plant, have attracted interest due to their potential pharmacological effects and medicinal uses. This comprehensive review presents the intricate pharmacological profiles of phytocannabinoids while exploring the diverse impacts these substances have on biological systems. From the more than one hundred cannabinoids which were identified in the Cannabis plant so far, cannabidiol (CBD) and tetrahydrocannabinol (THC) are two of the most extensively studied phytocannabinoids. CBD is a non-psychoactive compound, which exhibits potential anti-inflammatory, neuroprotective, and anxiolytic properties, making it a promising candidate for a wide array of medical conditions. THC, known for its psychoactive effects, possesses analgesic and antiemetic properties, contributing to its therapeutic potential. In addition to THC and CBD, a wide range of additional phytocannabinoids have shown intriguing pharmacological effects, including cannabichromene (CBC), cannabigerol (CBG), and cannabinol (CBN). The endocannabinoid system, made up of the enzymes involved in the production and breakdown of endocannabinoids, cannabinoid receptors (CB1 and CB2), and endogenous ligands (endocannabinoids), is essential for preserving homeostasis in several physiological processes. Beyond their effects on the endocannabinoid system, phytocannabinoids are studied for their ability to modify ion channels, neurotransmitter receptors, and anti-oxidative pathways. The complex interaction between phytocannabinoids and biological systems offers hope for novel treatment approaches and lays the groundwork for further developments in the field of cannabinoid-based medicine. This review summarizes the state of the field, points out information gaps, and emphasizes the need for more studies to fully realize the therapeutic potential of phytocannabinoids.


Cannabinoids , Humans , Cannabinoids/therapeutic use , Cannabinoids/pharmacology , Animals , Cannabis/chemistry , Endocannabinoids/metabolism , Endocannabinoids/therapeutic use , Cannabidiol/therapeutic use , Cannabidiol/pharmacology , Phytochemicals/therapeutic use , Phytochemicals/pharmacology , Dronabinol/therapeutic use , Dronabinol/pharmacology
9.
Cells ; 13(5)2024 Mar 06.
Article En | MEDLINE | ID: mdl-38474425

Cannabis use stimulates calorie intake, but epidemiological studies show that people who regularly use it are leaner than those who don't. Two explanations have been proposed for this paradoxical finding. One posits that Δ9-tetrahydrocannabinol (THC) in cannabis desensitizes adipose CB1 cannabinoid receptors, stopping their stimulating effects on lipogenesis and adipogenesis. Another explanation is that THC exposure in adolescence, when habitual cannabis use typically starts, produces lasting changes in the developing adipose organ, which impacts adult systemic energy use. Here, we consider these possibilities in the light of a study which showed that daily THC administration in adolescent mice produces an adult metabolic phenotype characterized by reduced fat mass, partial resistance to obesity and dyslipidemia, and impaired thermogenesis and lipolysis. The phenotype, whose development requires activation of CB1 receptors in differentiated adipocytes, is associated with overexpression of myocyte proteins in the adipose organ with unchanged CB1 expression. We propose that adolescent exposure to THC causes lasting adipocyte dysfunction and the consequent emergence of a metabolic state that only superficially resembles healthy leanness. A corollary of this hypothesis, which should be addressed in future studies, is that CB1 receptors and their endocannabinoid ligands may contribute to the maintenance of adipocyte differentiation during adolescence.


Cannabis , Endocannabinoids , Humans , Mice , Animals , Adolescent , Endocannabinoids/metabolism , Obesity/metabolism , Adipocytes/metabolism , Receptors, Cannabinoid/metabolism , Adiposity
10.
Adv Nutr ; 15(4): 100196, 2024 Apr.
Article En | MEDLINE | ID: mdl-38432590

Cannabis use has increased sharply in the last 20 y among adults, including reproductive-aged women. Its recent widespread legalization is associated with a decrease in risk perception of cannabis use during breastfeeding. However, the effect of cannabis use (if any) on milk production and milk composition is not known. This narrative review summarizes current knowledge related to maternal cannabis use during breastfeeding and provides an overview of possible pathways whereby cannabis might affect milk composition and production. Several studies have demonstrated that cannabinoids and their metabolites are detectable in human milk produced by mothers who use cannabis. Due to their physicochemical properties, cannabinoids are stored in adipose tissue, can easily reach the mammary gland, and can be secreted in milk. Moreover, cannabinoid receptors are present in adipocytes and mammary epithelial cells. The activation of these receptors directly modulates fatty acid metabolism, potentially causing changes in milk fatty acid profiles. Additionally, the endocannabinoid system is intimately connected to the endocrine system. As such, it is probable that interactions of exogenous cannabinoids with the endocannabinoid system might modify release of critical hormones (e.g., prolactin and dopamine) that regulate milk production and secretion. Nonetheless, few studies have investigated effects of cannabis use (including on milk production and composition) in lactating women. Additional research utilizing robust methodologies are needed to elucidate whether and how cannabis use affects human milk production and composition.


Cannabinoids , Cannabis , Adult , Female , Humans , Animals , Lactation , Milk, Human/chemistry , Breast Feeding , Endocannabinoids/analysis , Endocannabinoids/metabolism , Endocannabinoids/pharmacology , Milk/chemistry , Cannabinoids/pharmacology , Cannabinoids/analysis , Cannabinoids/metabolism , Fatty Acids/pharmacology
11.
Reprod Toxicol ; 125: 108575, 2024 Apr.
Article En | MEDLINE | ID: mdl-38462211

The generally undesired effects of exocannabinoids on male reproduction include alterations in testicular cell proliferation and function, as well as apoptosis induction. However, this paradigm has been challenged by the ability of endocannabinoids to regulate reproductive function. The present study addresses these paradoxical facts by investigating the effects of the endocannabinoid 2-arachidonoyl glycerol (2-AG) on mouse Sertoli cells' survival and apoptosis, with a mechanistic insight into Sertoli cell-based growth factors' production. The Mus musculus Sertoli cell line (TM4) was exposed to different concentrations of 2-AG, and cell viability was evaluated using MTT assay. Growth factors' gene and protein expressions were analyzed through RT-PCR and western blotting. 2-AG concentration dependently increased TM4 viability, with a slight increase starting at 0.0001 µM, a peak of 190% of the control level at 1 µM, and a decrease at 3 µM. Moreover, 2-AG paradoxically altered mRNA expression of caspase-3 and growth factors. Caspase-3 mRNA expression was down-regulated, and growth factors mRNA and protein expression were up-regulated when using a low concentration of 2-AG (1 µM). Opposite effects were observed by a higher concentration of 2-AG (3 µM). These paradoxical effects of 2-AG can be explained through the concept of hormesis. The results indicate the pivotal role of 2-AG in mediating Sertoli cell viability and apoptosis, at least in part, through altering growth factors secretion. Furthermore, they suggest the involvement of endocannabinoids in Sertoli cell-based physiological and pathological conditions and reflect the ability of abnormally elevated 2-AG to mimic the actions of exocannabinoids in reproductive dysfunction.


Cannabinoids , Endocannabinoids , Mice , Animals , Male , Endocannabinoids/metabolism , Endocannabinoids/pharmacology , Sertoli Cells , Caspase 3/metabolism , Glycerol/metabolism , Glycerol/pharmacology , Hormesis , Cell Survival , Apoptosis , RNA, Messenger/metabolism , Fertility , Cells, Cultured
12.
Mol Nutr Food Res ; 68(7): e2300616, 2024 Apr.
Article En | MEDLINE | ID: mdl-38430210

SCOPE: Endocannabinoid signaling regulates energy homeostasis, and is tightly associated with nonalcoholic fatty liver disease (NAFLD). The study previously finds that supplementation of docosahexaenoic acid (DHA) has superior function to ameliorate NAFLD compared with eicosapentaenoic acid (EPA), however, the underlying mechanism remains elusive. The present study aims to investigate whether DHA intervention alleviates NAFLD via endocannabinoid system. METHODS AND RESULTS: In a case-control study, the serum endocannabinoid ligands in 60 NAFLD and 60 healthy subjects are measured. Meanwhile, NAFLD model is established in mice fed a high-fat and -cholesterol diet (HFD) for 9 weeks. DHA or EPA is administrated for additional 9 weeks. Serum primary endocannabinoid ligands, namely anandamide (AEA) and 2-arachidoniylglycerol (2-AG), are significantly higher in individuals with NAFLD compared with healthy controls. NAFLD model shows that serum 2-AG concentrations and adipocyte cannabinoid receptor 1 expression levels are significantly lower in DHA group compared with HFD group. Lipidomic and targeted ceramide analyses further confirm that endocannabinoid signaling inhibition has exerted deletion of hepatic C16:0-ceramide contents, resulting in down-regulation of de novo fatty acid synthesis and up-regulation of fatty acid ß-oxidation related protein expression levels. CONCLUSIONS: This work elucidates that DHA has improved NAFLD by suppressing endocannabinoid system.


Non-alcoholic Fatty Liver Disease , Humans , Mice , Animals , Non-alcoholic Fatty Liver Disease/drug therapy , Non-alcoholic Fatty Liver Disease/etiology , Non-alcoholic Fatty Liver Disease/metabolism , Docosahexaenoic Acids/pharmacology , Docosahexaenoic Acids/metabolism , Endocannabinoids/metabolism , Case-Control Studies , Liver/metabolism , Eicosapentaenoic Acid/pharmacology , Ceramides/metabolism , Diet, High-Fat/adverse effects , Mice, Inbred C57BL
13.
Front Immunol ; 15: 1331210, 2024.
Article En | MEDLINE | ID: mdl-38464529

Introduction: Microglia and macrophages can influence the evolution of myelin lesions through the production of extracellular vesicles (EVs). While microglial EVs promote in vitro differentiation of oligodendrocyte precursor cells (OPCs), whether EVs derived from macrophages aid or limit OPC maturation is unknown. Methods: Immunofluorescence analysis for the myelin protein MBP was employed to evaluate the impact of EVs from primary rat macrophages on cultured OPC differentiation. Raman spectroscopy and liquid chromatography-mass spectrometry was used to define the promyelinating lipid components of myelin EVs obtained in vitro and isolated from human plasma. Results and discussion: Here we show that macrophage-derived EVs do not promote OPC differentiation, and those released from macrophages polarized towards an inflammatory state inhibit OPC maturation. However, their lipid cargo promotes OPC maturation in a similar manner to microglial EVs. We identify the promyelinating endocannabinoids anandamide and 2-arachidonoylglycerol in EVs released by both macrophages and microglia in vitro and circulating in human plasma. Analysis of OPC differentiation in the presence of the endocannabinoid receptor antagonists SR141716A and AM630 reveals a key role of vesicular endocannabinoids in OPC maturation. From this study, EV-associated endocannabinoids emerge as important mediators in microglia/macrophage-oligodendrocyte crosstalk, which may be exploited to enhance myelin repair.


Extracellular Vesicles , Microglia , Rats , Animals , Humans , Microglia/metabolism , Endocannabinoids/metabolism , Macrophages , Oligodendroglia/metabolism
14.
Exp Brain Res ; 242(5): 1149-1160, 2024 May.
Article En | MEDLINE | ID: mdl-38489023

Hypofunctioning of NMDA receptors, and the resulting shift in the balance between excitation and inhibition, is considered a key process in the pathophysiology of schizophrenia. One important manifestation of this phenomenon is changes in neural oscillations, those above 30 Hz (i.e., gamma-band oscillations), in particular. Although both preclinical and clinical studies observed increased gamma activity following acute administration of NMDA receptor antagonists, the relevance of this phenomenon has been recently questioned given the reduced gamma oscillations typically observed during sensory and cognitive tasks in schizophrenia. However, there is emerging, yet contradictory, evidence for increased spontaneous gamma-band activity (i.e., at rest or under baseline conditions). Here, we use the sub-chronic phencyclidine (PCP) rat model for schizophrenia, which has been argued to model the pathophysiology of schizophrenia more closely than acute NMDA antagonism, to investigate gamma oscillations (30-100 Hz) in the medial prefrontal cortex of anesthetized animals. While baseline gamma oscillations were not affected, oscillations induced by train stimulation of the posterior dorsal CA1 (pdCA1) field of the hippocampus were enhanced in PCP-treated animals (5 mg/kg, twice daily for 7 days, followed by a 7-day washout period). This effect was reversed by pharmacological enhancement of endocannabinoid levels via systemic administration of URB597 (0.3 mg/kg), an inhibitor of the catabolic enzyme of the endocannabinoid anandamide. Intriguingly, the pharmacological blockade of CB1 receptors by AM251 unmasked a reduced gamma oscillatory activity in PCP-treated animals. The findings are consistent with the observed effects of URB597 and AM251 on behavioral deficits reminiscent of the symptoms of schizophrenia and further validate the potential for cannabinoid-based drugs as a treatment for schizophrenia.


Amidohydrolases , Benzamides , Carbamates , Disease Models, Animal , Gamma Rhythm , Phencyclidine , Piperidines , Prefrontal Cortex , Schizophrenia , Animals , Schizophrenia/physiopathology , Schizophrenia/metabolism , Schizophrenia/drug therapy , Phencyclidine/pharmacology , Prefrontal Cortex/drug effects , Prefrontal Cortex/metabolism , Prefrontal Cortex/physiopathology , Gamma Rhythm/physiology , Gamma Rhythm/drug effects , Male , Rats , Carbamates/pharmacology , Benzamides/pharmacology , Amidohydrolases/antagonists & inhibitors , Amidohydrolases/metabolism , Piperidines/pharmacology , Pyrazoles/pharmacology , Excitatory Amino Acid Antagonists/pharmacology , Excitatory Amino Acid Antagonists/administration & dosage , Endocannabinoids/metabolism , Arachidonic Acids/metabolism , Arachidonic Acids/pharmacology , Rats, Sprague-Dawley , Polyunsaturated Alkamides/metabolism , Polyunsaturated Alkamides/pharmacology
15.
J Nutr Biochem ; 128: 109605, 2024 Jun.
Article En | MEDLINE | ID: mdl-38401691

The endocannabinoid system (ECS) is dysregulated during obesity and metabolic disorders. Weight loss favours the re-establishment of ECS homeostatic conditions, but also the fatty acid composition of the diet can modulate endocannabinoid profiles. However, the combined impact of nutrient quality and energy restriction on the ECS remains unclear. In this 12 weeks randomized controlled trial, men and women (40-70 years) with obesity (BMI: 31.3 ± 3.5 kg/ m2) followed either a low nutrient quality 25% energy-restricted (ER) diet (n=39) high in saturated fats and fructose, or a high nutrient quality ER diet (n=34) amongst others enriched in n-3 polyunsaturated fatty acids (PUFAs) or kept their habitual diet (controls). Profiles of plasma- and adipose N-acylethanolamines and mono-acyl glycerol esters were quantified using LC-MS/MS. Gene expression of ECS-related enzymes and receptors was determined in adipose tissue. Measurements were performed under fasting conditions before and after 12 weeks. Our results showed that plasma level of the DHA-derived compound docosahexaenoylethanolamide (DHEA) was decreased in the low nutrient quality ER diet (P<0.001) compared with the high nutrient quality ER diet, whereas anandamide (AEA) and arachidonoylglycerol (2-AG) levels were unaltered. However, adipose tissue gene expression of the 2-AG synthesizing enzyme diacylglycerol lipase alpha (DAGL-α) was increased following the low nutrient quality ER diet (P<.009) and differed upon intervention with both other diets. Concluding, nutrient quality of the diet affects N-acylethanolamine profiles and gene expression of ECS-related enzymes and receptors even under conditions of high energy restriction in abdominally obese humans. ClinicalTrials.gov NCT02194504.


Adipose Tissue , Caloric Restriction , Endocannabinoids , Lipoprotein Lipase , Obesity, Abdominal , Humans , Endocannabinoids/metabolism , Endocannabinoids/blood , Middle Aged , Male , Female , Adult , Aged , Adipose Tissue/metabolism , Obesity, Abdominal/diet therapy , Obesity, Abdominal/metabolism , Obesity, Abdominal/blood , Lipoprotein Lipase/metabolism , Ethanolamines/metabolism , Nutrients/metabolism
16.
Neurochem Res ; 49(5): 1278-1290, 2024 May.
Article En | MEDLINE | ID: mdl-38368587

Social isolation is a state of lack of social connections, involving the modulation of different molecular signalling cascades and associated with high risk of mental health issues. To investigate if and how gene expression is modulated by social experience at the central level, we analyzed the effects of 5 weeks of social isolation in rats focusing on endocannabinoid system genes transcription in key brain regions involved in emotional control. We observed selective reduction in mRNA levels for fatty acid amide hydrolase (Faah) and cannabinoid receptor type 1 (Cnr1) genes in the amygdala complex and of Cnr1 in the prefrontal cortex of socially isolated rats when compared to controls, and these changes appear to be partially driven by trimethylation of Lysine 27 and acetylation of Lysine 9 at Histone 3. The alterations of Cnr1 transcriptional regulation result also directly correlated with those of oxytocin receptor gene. We here suggest that to counteract the effects of SI, it is of relevance to restore the endocannabinoid system homeostasis via the use of environmental triggers able to revert those epigenetic mechanisms accounting for the alterations observed.


Amidohydrolases , Endocannabinoids , Lysine , Receptor, Cannabinoid, CB1 , Social Isolation , Animals , Rats , Amidohydrolases/genetics , Endocannabinoids/metabolism , Receptor, Cannabinoid, CB1/genetics , Receptors, Cannabinoid/metabolism
17.
Neuropharmacology ; 248: 109870, 2024 May 01.
Article En | MEDLINE | ID: mdl-38401791

Delayed therapeutic responses and limited efficacy are the main challenges of existing antidepressant drugs, thereby incentivizing the search for new potential treatments. Cannabidiol (CBD), non-psychotomimetic component of cannabis, has shown promising antidepressant effects in different rodent models, but its mechanism of action remains unclear. Herein, we investigated the antidepressant-like effects of repeated CBD treatment on behavior, neuroplasticity markers and lipidomic profile in the prefrontal cortex (PFC) of Flinders Sensitive Line (FSL), a genetic animal model of depression, and their control counterparts Flinders Resistant Line (FRL) rats. Male FSL animals were treated with CBD (10 mg/kg; i.p.) or vehicle (7 days) followed by Open Field Test (OFT) and the Forced Swimming Test (FST). The PFC was analyzed by a) western blotting to assess markers of synaptic plasticity and cannabinoid signaling in synaptosome and cytosolic fractions; b) mass spectrometry-based lipidomics to investigate endocannabinoid levels (eCB). CBD attenuated the increased immobility observed in FSL, compared to FRL in FST, without changing the locomotor behavior in the OFT. In synaptosomes, CBD increased ERK1, mGluR5, and Synaptophysin, but failed to reverse the reduced CB1 and CB2 levels in FSL rats. In the cytosolic fraction, CBD increased ERK2 and decreased mGluR5 expression in FSL rats. Surprisingly, there were no significant changes in eCB levels in response to CBD treatment. These findings suggest that CBD effects in FSL animals are associated with changes in synaptic plasticity markers involving mGluR5, ERK1, ERK2, and synaptophysin signaling in the PFC, without increasing the levels of endocannabinoids in this brain region.


Cannabidiol , Depression , Rats , Male , Animals , Depression/drug therapy , Depression/genetics , Cannabidiol/pharmacology , Endocannabinoids/metabolism , Synaptophysin/metabolism , Antidepressive Agents/pharmacology , Prefrontal Cortex , Neuronal Plasticity , Disease Models, Animal
18.
Braz J Med Biol Res ; 57: e12857, 2024.
Article En | MEDLINE | ID: mdl-38381881

MCH1 is a synthetic macamide that has shown in vitro inhibitory activity on fatty acid amide hydrolase (FAAH), an enzyme responsible for endocannabinoid metabolism. This inhibition can modulate endocannabinoid and dopamine signaling in the nucleus accumbens (NAc), potentially having an antidepressant-like effect. The present study aimed to evaluate the effect of the in vivo administration of MCH1 (3, 10, and 30 mg/kg, ip) in 2-month-old BALB/c male mice (n=97) on forced swimming test (FST), light-dark box (LDB), and open field test (OFT) and on early gene expression changes 2 h after drug injection related to the endocannabinoid system (Cnr1 and Faah) and dopaminergic signaling (Drd1 and Drd2) in the NAc core. We found that the 10 mg/kg MCH1 dose reduced the immobility time compared to the vehicle group in the FST with no effect on anxiety-like behaviors measured in the LDB or OFT. However, a 10 mg/kg MCH1 dose increased locomotor activity in the OFT compared to the vehicle. Moreover, RT-qPCR results showed that the 30 mg/kg MCH1 dose increased Faah gene expression by 2.8-fold, and 10 mg/kg MCH1 increased the Cnr1 gene expression by 4.3-fold compared to the vehicle. No changes were observed in the expression of the Drd1 and Drd2 genes in the NAc at either MCH1 dose. These results indicated that MCH1 might have an antidepressant-like effect without an anxiogenic effect and induces significant changes in endocannabinoid-related genes but not in genes of the dopaminergic signaling system in the NAc of mice.


Amidohydrolases , Endocannabinoids , Nucleus Accumbens , Mice , Male , Animals , Endocannabinoids/metabolism , Endocannabinoids/pharmacology , Nucleus Accumbens/metabolism , Dopamine/metabolism , Dopamine/pharmacology , Antidepressive Agents/pharmacology , Gene Expression
19.
Physiol Rep ; 12(4): e15947, 2024 Feb.
Article En | MEDLINE | ID: mdl-38408761

The endocannabinoid system is widely expressed throughout the body and is comprised of receptors, ligands, and enzymes that maintain metabolic, immune, and reproductive homeostasis. Increasing interest in the endocannabinoid system has arisen due to these physiologic roles, policy changes leading to more widespread recreational use, and the therapeutic potential of Cannabis and phytocannabinoids. Rodents have been the primary preclinical model of focus due to their relative low cost, short gestational period, genetic manipulation strategies, and gold-standard behavioral tests. However, the potential for lack of clinical translation to non-human primates and humans is high as cross-species comparisons of the endocannabinoid system have not been evaluated. To bridge this gap in knowledge, we evaluate the relative gene expression of 14 canonical and extended endocannabinoid receptors in seven peripheral organs of C57/BL6 mice, Sprague-Dawley rats, and non-human primate rhesus macaques. Notably, we identify species- and organ-specific heterogeneity in endocannabinoid receptor distribution where there is surprisingly limited overlap among the preclinical models. Importantly, we determined there were no receptors with identical expression patterns among mice (three males and two females), rats (six females), and rhesus macaques (four males). Our findings demonstrate a critical, yet previously unappreciated, contributor to challenges of rigor and reproducibility in the cannabinoid field, which has implications in hampering progress in understanding the complexity of the endocannabinoid system and development of cannabinoid-based therapies.


Cannabinoids , Endocannabinoids , Male , Female , Mice , Animals , Rats , Endocannabinoids/metabolism , Macaca mulatta/metabolism , Reproducibility of Results , Rats, Sprague-Dawley , Cannabinoids/metabolism , Cannabinoids/therapeutic use , Models, Animal
20.
Int J Mol Sci ; 25(3)2024 Jan 30.
Article En | MEDLINE | ID: mdl-38338960

The lipid endocannabinoid system has recently emerged as a novel therapeutic target for several inflammatory and tissue-damaging diseases, including those affecting the cardiovascular system. The primary targets of cannabinoids are cannabinoid type 1 (CB1) and 2 (CB2) receptors. The CB2 receptor is expressed in the cardiomyocytes. While the pathological changes in the myocardium upregulate the CB2 receptor, genetic deletion of the receptor aggravates the changes. The CB2 receptor plays a crucial role in attenuating the advancement of myocardial infarction (MI)-associated pathological changes in the myocardium. Activation of CB2 receptors exerts cardioprotection in MI via numerous molecular pathways. For instance, delta-9-tetrahydrocannabinol attenuated the progression of MI via modulation of the CB2 receptor-dependent anti-inflammatory mechanisms, including suppression of pro-inflammatory cytokines like IL-6, TNF-α, and IL-1ß. Through similar mechanisms, natural and synthetic CB2 receptor ligands repair myocardial tissue damage. This review aims to offer an in-depth discussion on the ameliorative potential of CB2 receptors in myocardial injuries induced by a variety of pathogenic mechanisms. Further, the modulation of autophagy, TGF-ß/Smad3 signaling, MPTP opening, and ROS production are discussed. The molecular correlation of CB2 receptors with cardiac injury markers, such as troponin I, LDH1, and CK-MB, is explored. Special attention has been paid to novel insights into the potential therapeutic implications of CB2 receptor activation in MI.


Cannabinoids , Myocardial Infarction , Receptor, Cannabinoid, CB1 , Humans , Cannabinoids/pharmacology , Cannabinoids/therapeutic use , Cannabinoids/metabolism , Endocannabinoids/metabolism , Myocardial Infarction/drug therapy , Myocardial Infarction/genetics , Myocardial Infarction/metabolism , Myocardium/metabolism , Receptor, Cannabinoid, CB1/genetics , Receptor, Cannabinoid, CB1/metabolism , Receptor, Cannabinoid, CB2/genetics , Receptor, Cannabinoid, CB2/metabolism , Receptors, Cannabinoid/metabolism , Dronabinol/pharmacology
...